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Tensor Product of Difference Posets and Effect 
Algebras 
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A tensor product of difference posets and/or, equivalently, of effect algebras, 
which generalize orthoalgebras and orthomodular posets, is defined, and an 
equivalent condition is presented. The proof uses the notion of D-test spaces 
generalizing test spaces of Randall and Foulis. In particular, we show that a 
tensor product for difference posets with a nonempty system of probability 
measures exists. 

1. INTRODUCTION 

The event structure of a quantum physical system is identified with a 
quantum logic (Busch et  al., 1991) or an orthoalgebra (Randall and Foulis, 
1981; Foulis et  al., 1992), in contrast to classical mechanics, where it is 
assumed to be a Boolean algebra. An important problem is that of coupled 
systems of two independent physical systems P and Q. The event structure 
L of this coupled system L, if it exists, is usually called a tensor product, 
and we write L = P | Q. 

Tensor products in various approaches have been studied (Sikorski, 
1964; Aerts and Daubechies, 1978; Matolesi, 1975; Foulis, 1989; Foulis and 
Randall, 1981; Kl~iy et al., 1987; Lock, 1990; Pulmannov~i, 1985; Randall 
and Foulis, 1981; Wilce, 1990; Zecca, 1978; Hudson and Pulmannovfi, 1993). 
One of the factors motivating the study of orthoalgebras was the discovery 
(Foulis and Randall, 1981) that there does not exist a satisfactory theory of 
tensor products of orthomodular posets and lattices. A tensor product of 
orthoalgebras has been investigated by Foulis and Bennett (1993) via a 
universal mapping property, and a tensor product of an orthoalgebra and a 
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Boolean algebra is given in Foulis and Ptak (1993). Unfortunately, Foulis 
and Bennett (1993) showed that the category of orthoalgebras is not closed 
with respect to the formation of tensor products. Therefore, more available 
structures have been expected. 

At the beginning of 1990s, my former student, K6pka and Chovanec, 
have presented a new axiomatic model, differenceposets. Their idea is simple: 
If we have two comparable events a and b (a -< b), then our knowledge on 
a and b entails the complete knowledge of the rest of a in b, i.e., b O a. 
First this idea was applied to fuzzy set ideas in quantum mechanics (K6pka, 
1992) and then presented in a general algebraic form (K6pka and Chovanec, 
1994). Difference posets generalize quantum logics, orthoalgebras, as well 
as the set of all effects [i.e., the system of all Hermitian operators A on a 
Hilbert space H with O --< A - - / ,  which are important for modeling unsharp 
measurement in a Hilbert space quantum mechanics (Busch et al., 1991)]. 
A big advantage of difference posets is the possibility of handling self- 
orthogonal events. 

The difference posets with a primary notion of the difference of compara- 
ble events have been very well adopted by the Slovak group as well as others. 
Recently Pulmannovfi (1994), Foulis and Bennett (1994), Gudder (1994), 
and Greechie (1994) studied a structure, called now an effect algebra, with 
a primary operation G slightly generalizing orthoalgebras. Here a �9 b is 
defined only for mutually excluded events a and b. But, as stressed, difference 
posets and effect algebras are practically the same thing, because G can be 
uniquely derived from O to be an effect algebra and vice versa. 

This spring, my friend, R. Giuntini, called my attention to the fact that 
in 1989, he and Greuling, starting from orthoalgebras, presented a structure, 
a weak orthoalgebra, with a primary operation O, which is perfectly the 
same thing as an effect algebra, and now the circle is closed. 

Today difference posets or effect algebras present an interesting structure 
having many possibilities, from quantum structures to Abelian semigroups 
or groups (Foulis and Bennett, 1994; Wilce, 1994), 2 and, as Shakespeare 
said, a rose is beautiful under any name. I am very glad that the interest of 
the mathematics and physics community in these structures has risen with 
the appearance of KSpka and Chovanec's model of difference posets. 

The aim of the present paper is to describe the situation of a tensor 
product in the category of difference posets, or equivalently, in the category 
of effect algebras. The first result was given in Dvure6enskij (1994). Here 
we present a new proof using the notion of D-test spaces developed in 

ZFor example, in Foulis and Bennett (1994) it is shown that, for any D-poset L, there exists a 
universal group representation (N, "~), where N is an Abelian group and ~, is a %valued 
measure on L. We recall that the trivial case N = {0} is not excluded. 
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Dvure~enskij and Pulmannov~i (1994) and compare it with another approach 
to this problem. 

2. D I F F E R E N C E  P O S E T S  

A D-poset,  or a difference poset,  is a partially ordered set 3 L with a 
partial ordering <-, greatest element 1, and partial binary operation @: L • 
L --> L, called a difference, such that, for a, b E L, b @ a is defined if and 
only if a <- b, and such that the following axioms hold for a, b, c ~ L: 

(DPi) b G a < - b .  
(DPii) b Q ( b O a )  = a. 

(DPiii) a - < b - < c ~ c O b - - - c Q a a n d ( c O a )  Q ( c G b ) = b O a .  

The following statements have been proved in K6pka and Chovanec 
(1994). 

Proposition 2.1. Let a, b, c, d be elements of a D-poset L. Then: 

(i) 1 O 1 is the smallest element of L; denote it by 0. 
(ii) a @ 0  = a. 

(iii) a G a  = 0. 
(iv) a < - b ~ b O a = O c = > b = a .  
(v) a < - b ~ b G a = b < = * a = O .  

(vi) a < - - b < - c ~ b G a < - c ( ~ a a n d ( c G a ) ( ~ ( b O a ) = c O b .  
(vii) b -<  c , a - <  c o b  ~ b - <  c G a a n d ( c O b )  G a  = ( c O a )  

G b .  
(viii) a - < b < - c ~ a < - c O ( b O a )  a n d ( c O ( b G a ) ) O a = c Q b .  

Example  2.2. The set %(H) of all Hermitian operators A on H such that 
O - A -----/, where I is the identity operator on H, is a difference poset (which 
is not an orthoalgebra); a partial ordering -< is defined via A -< B iff (Ax, x) 
<-- (Bx, x), x E H, and C = B O A i f f ( A x ,  x) - (Bx, x) = (Cx, x), x E H. 

Example  2.3. Let the closed interval [0, 1] be ordered by the natural 
ordering. Let g be any continuous, increasing mapping from [0, 1] onto 
[0, 1] such that g(0) = 0 and g(1) = 1 (called a generator). Define a partial 
binary operation Gg via 

b @g a := g- l (g (b )  -- g(a)) (2.1) 

Then L with --<, 1, and (~g is a D-poset (K6pka and Chovanec, 1994). In 
particular, if g = id[0,11, then b Old a = b - a. 

3We assume that card L > 1. 
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Conversely, by Mesiar (1994), any difference O on the D-poset [0, 1] 
is equal to some Og defined by (2.1). 

For any element a ~ L, we put 

a Z :  = 1 O a  

Then (i) a •  = a; (ii) a --< b implies b • - a • Two elements a and b of  L 
are orthogonal, and we write a _L b iff a --< b • (iff b --< a• 

Now we introduce a partial binary operation O:  L X L ~ L such that 
an element c = a �9 b in L is defined iff a J_ b, and for c we have 

c = a O b  = (a •  = (b •  • C2.2) 

The operation �9 is commutative and associative. 

3. EFFECT ALGEBRAS 

An effect algebra (Greechie, 1994) is a set L with two particular elements 
0, 1, and with a partial binary operation O:  L X L _.l> L such that for all a, 
b, c c L we have: 

(EAi) If  a �9 b c L, then b �9 a ~ L and a �9 b = b �9 a 
Ccornmutativity). 

(EAii) I f b O c  ~ L a n d a O ( b O c )  ~ L, t h e n a O b  ~ L a n d C a  
�9 b) �9 c ~ L, and a �9 (b O c) = (a �9 b) �9 c (associativity), 

(EAiii) For any a E L there is a unique b ~ L s u c h  that a �9 b is 
defined, and a �9 b = 1 (orthocomplementation).  

(EAiv) If  1 �9 a is defined, then a = 0 ( ze ro -one  law). 

If  the assumptions of  (EArl) are satisfied, we write a �9 b �9 c for the 
element Ca O b) O c  = a O C b O c )  inL .  

If  (EAiv) is changed to 

(OA) I f  a �9 a is defined, then a = 0 (consistency) 

we say that L is an orthoalgebra. 
Let a and b be two elements of  an effect algebra L. We say that (i) a 

is orthogonal to b and write a • b iff a �9 b is defined in L, (ii) a is less 
than or equal to b and write a -< b iff there exists an element c ~ L such 
that a • c and a �9 c = b (in this case we also write b --> a), and (iii) b is 
the orthocomplement of  a iff b is a (unique) element o f  L such that b • a 
and a G b = 1 and it is written as a=. 

If  a -< b, for the element c in (ii) with a G c = b we write c = b O 
a, and c is called the difference of  a and b. It is evident that 
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b O a = (a �9 b• • (3.1) 

It is clear that if (L, 1, ---, G)  is a difference poset, then (L, 0, 1, O)  is 
an effect algebra, where �9 is defined by (2.1) and 0 = 1 G 1. Conversely, 
if (L, 0, 1, O)  is an effect algebra, then (L, 1, <-, O)  is a difference poset, 
where O is defined by (3.1) and --- is naturally defined in L. In other words, 
difference posets and effect algebras are the same thing. 

Let F = {al . . . . .  a,} be a finite sequence in L. Recursively we define 
f o r n _ >  3 

al �9 " '"  �9 an : =  (a~ �9 " '"  �9 an- l )  @ an (3.2) 

supposing that al �9 " "  �9 a , - t  and (al �9 " "  �9 a , - I )  �9 an exist in L. From 
the associativity o f  �9 in D-posets we conclude that (3.2) is correctly defined. 
By definition we put al �9 - "  �9 an = al if n = 1, and al �9 " -  �9 a ,  = 0 
if n = 0. Then for any permutation (il . . . . .  i,) o f  (1 . . . . .  n) and any k with 
1 -< k --< n we have 

al �9 " "  �9 a ,  = aij �9 " ' "  O ain (3.3) 

al �9 " '"  �9 a ,  = (al �9 " '"  �9 a~) �9 (ak+l �9 " '"  �9 an) (3.4) 

We say that a finite sequence F = {al . . . . .  a ,} in L is O-orthogonal  

if al �9 " '"  �9 an exists in L. In this case we say that F has a O-sum, @7=l 

ai, defined via 

n 

0 ai ---- al �9 "'" �9 a,  (3.5) 
i = l  

It is clear that two elements a and b of  L are orthogonal,  i.e., a _k b, 
iff {a, b} is O-orthogonal .  

Let n be a nonnegative integer and let a E L. If  n = 0, we define na 

: =  0, and if n = 1, we define na : =  a. I f  n > 1, let a~ : =  a for i = 1, 2, 
. . . .  n. We say that na is defined iff {al . . . . .  a,} is O-orthogonal ,  in which 
case we define na : =  O~=1 ai. 

A finite decomposition of  1 is any O-or thogonal  finite sequence (a~, 
. . . .  an) such that Oi':l ai = 1. 

4. D - T E S T  S P A C E S  

For orthoalgebras, a test space is a basic notion developed by Randall 
and Foulis (1981) because orthoalgebras and algebraic test spaces are in an 
intimate correspondence (Foulis et al., 1992). In this section, we give a 
generalization o f  test spaces, D-test space, which was originally presented 
in Dvure~enskij and Pulmannov~ (1994); here we give a more elementary 
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definition. D-test spaces will be used for a tensor product o f  difference posets 
or, equivalently, of  effect algebras. In fact, it will deal with so-called finite 
D-test spaces, which are a special case of  general D-tests f rom Dvure6enskij 
and Pulmannov~i (1994); however, for our aims it is satisfactory only to have 
this type of  D-test space. 

Let X be a nonempty set; elements of  X are called outcomes. For two 
finite sequences F = (fl, . . - ,  f , )  and G = (gi . . . . .  g,n) f rom [X] "= 
U ~  v n  4 n=0 ~ ,  we write F -< G iff n --- m and if there is an injection cr: { 1 . . . . .  
n} ~ {1 . . . . .  m} such that F = G o or, i . e , f /  = g,~(i) for any i = 1 . . . . .  
n. If, for F, G ~ [X] we have F < G and G < F, we say that F and G are 
equivalent, in symbols F - G, and - is an equivalence relation on [X]. In 
what follows, we shall identify finite sequences which are equivalent. 

Therefore, we can define unambiguously a sequence F Q G, when 

F = (fl . . . . .  f , )  and G = (gl . . . . .  gin), via 

F (3 G = (fl . . . . .  f , ,  gl . . . . .  gin) 

By ~ ( F )  we denote the range o f  the sequence F = (a~ . . . . .  a,), i.e., 
~ ( F )  = {al . . . . .  a,}. 

Definition 4.1. Let 3" C_ [X] be nonempty, where X ~ 0. We say that 
the pair (X, 3") is a D-test space iff the following two conditions are satisfied: 

(i) For every x ~ X there is an T ~ 3" such that x ~ ~(T) .  
(ii) I f  S, T E 3" and S ~ T, then S ~ T. 

Any element of  3" is said to be a D-test. 

any D-test T = (al . . . . .  a,)  E 3" we have card{aa, 
3") is a test space in the sense of  Randall and 

We recall that if, for 
. . . .  a,} = n, then (X, 
Foulis (1981). 

Lemma 4.2. If  F IX] is a D-test, then F ~ U~=~ X". 

Proof  Let F = 0 E 3". Then, for any T ~ 3", F -< T implies F -- T 
and, by (ii) of  Definition 4.1, T = 0, which is in contradiction with the 
condition (i) of  Definition 4.1. �9 

Definition 4.3. Let (X, 3") be a D-test space. We say that G E [X] is 
an event iff there is a D-test T ~ 3" such that G < T. Let us denote the set 
of  all events in 3" by % = %(X, 3"). 

Clearly, 0 e %. 

Definition 4.4. Let (X, 3") be a D-test space. We say that two events F 
and G are (i) orthogonal to each other, in symbols F A_ G, iff there is a D- 
test T ~ 3" such that F 0 G < T; (ii) local complements of  each other, in 

4If n = 0, then x ~ := {0}. 
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symbols F loc G, iff there is a D-test T e 3- such that F 0 G - T; (iii) 
perspective with axis H iff they share a common local complement H. We 
write F ~ x  G or F ~ G if the axis is not emphasized. 

The D-test space (X, ~ )  is D-algebraic iff, for F, G, H E %, F ~- G 
and F -L H entail G _1_ H. For simplicity, we usually refer to X, rather than 
to (X, ~),  as a D-test space; similarly, we put % = %(X). In what follows, 
let X be a D-test space. 

It is possible to show that if X is D-algebraic, then ~ is an equivalence 
relation on %, and we can define, for F e %, Iv(F) := {G e %: G ~ F} 
and we refer to w(F) as the proposition affiliated with F. The set 

H = H ( X ) : =  {Iv(F): F ~ %} (4.1) 

is called the logic of the D-test space X. 
We define 0, 1 ~ H by 

0 = ~(0), 1 = ~T(T) (4.2) 

where T is any D-test. 
Similarly, we define, for F ~ %, the negation ~(F) '  of the proposition 

w(F) e FI(X) by ~r(F)' = w(G), whenever G is any local complement of F 
in %. 

Theorem 4.5. Let X be a D-algebraic D-test space. Then the logic II(X) 
of X can be organized into a D-poset or, equivalently, into an effect algebra. 

Proof For two events a, b e II(X), we define a - b iff there are F, G, 
H e % such that a = ~r(F), b = Iv(G), H L F, and G ~ F 0 H. Moreover, 
we define b G a via b O a := ~r(H). Then <-- is a partial ordering on II(X) 
with the smallest element w(0) and the greatest element ~r(T), where T is 
any D-test. A direct calculation shows that II(X) with <-, ~r(1), O is a 
difference poset in question. �9 

Let P and L be two D-posets. A mapping qb: P ---> L is said to be: 

(i) a morphism iff 4)(1) = 1, and p • q, p, q e P, implies +(p) • 
+(q) and qb(p | q) = +(p) G +(q); 

(ii) a monomorphism iff + is a morphism and +(p) • +(q) i f fp  • q; 
(iii) an isomorphism iff + is a surjective monomorphism, and we say 

that P is isomorphic to L; 
(iv) a state if  L is a D-poset from Example 2.3. 

Let P, Q, L be D-posets. A mapping [3: P X Q --> L is called a bimorph- 
ism iff: 

(i) a, b ~ P with a _L b, q ~ Q imply [3(a, q) 3_ [3(b, q) and [3(a G 
b, q) = [3(a, q) G [3(b, q). 
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(ii) c , d  e Q w i t h c  L d , p  ~ P imp ly  [3(p,c) • [3(p,d) and[~(p, 
c �9 d) = [3(p, c) @ [3(p, d). 

(iii) [3(1, 1) = 1. 

If [3: P X Q -9 L is a bimorphism, then [3(., 1): P -9 L and [3(1, .): 
Q --> L are morphisms. Therefore, for p E P and q e Q, we have 13(p, 1) • 
= [3(p • 1), [3(1, q)-  = [3(1, q• and [3(p, 0) = [3(0, q) = 0. 

Also, if a, b, p E P and c, d, q ~ Q, we have a -< b =* [3(a, q) --- [3(b, 
q) and c --< d =* [3(p, c) -< [3(p, d). 

Theorem 4.6. Let L be a D-poset. Then there exists a D-algebraic D- 
test space (X, 0-) such that L is isomorphic to II(X). 

Proof Let X = L\{0} and let 0- be the set of all finite partitions of 1 
in L consisting of nonzero elements. It is possible to show that (X, 0-) is a 
D-algebraic D-test space. 

Let II(X) be the logic of X. By Theorem 4.5, II(X) is a D-poset. Define 
a mapping r L -9 II(X) by 

= [w({a}) if a ~ 0 
+(a) L-rr(13) if a = 0 

The mapping d) is an isomorphism from L onto II(X). �9 

5. T E N S O R  P R O D U C T S  

In the present section, we define a tensor product of difference posers 
and a necessary and sufficient condition for it to exist. The following definition 
was presented originally in Dvure~enskij (1994). 

Definition 5.1. Let P and Q be difference posets. We say that a pair (T, 
-r) consisting of a difference poset T and a bimorphism "r: P x Q -9 T is a 
tensor product of P and Q iff the following conditions are satisfied: 

(i) If L is a D-poset and [3: P X Q --> L is a bimorphism, there exists 
a morphism <b: T -9 L such that [3 = cb o 'r. 

(ii) Every element of T is a finite orthogonal sum of elements of the 
form "r(p, q )wi th  p e P, q ~ Q. 

It is not hard to show that if a tensor product (T, 'r) of P and Q exists, 
it is unique up to an isomorphism, i.e., if (T, 'r) and (T*, 'r*) are tensor 
products of D-posers P and Q, then there is a unique isomorphism ~: T --4 
T* such that ~('r(p, q)) -- "r*(p, q) for all p ~ P, q e Q. 

Now we present the main assertion (see also Dvure~enskij, 1994) of 
this section using the notion of D-test spaces. 
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Theorem 5.2. The difference posets P and Q admit a tensor product if 
and only if there is at least one difference poset L for which there is a 
bimorphism [3: P • Q --> L. 

Proof The necessary condition is evident. 
For the sufficiency, suppose that N is the subset of P X Q consisting 

of all (p, q) such that [3(p, q) = 0 for every bimorphism [3 on P • Q. Define 
X := (P X Q)\N. I rA = {(Pi, qi)}}'=l is a finite sequence of elements from 
P X Q and [3: P x Q --> L is a bimorphism, it is clear that [3(A) is Q- 
orthogonal iff [3(.,{) is O-orthogonal, where .4 = {(Pi, qi)}m=l, 0 <--- m ---< n, 
and (Pi, qi) E A, (Pi, qi) ~ X; in this case G [3(A) = G [3(A) for every 
bimorphism [3 on P • Q. 

Denote by ~ the set of all finite sequences H of elements from X such 
that for every bimorphism [3, [3(H) is a finite decomposition of 1. It is clear 
that 7{ is nonempty, since {(1, 1)} e 7{. We assert that that (X, ~ )  is an 
algebraic D-test space. Then the set of all effects, %(~),  is the set of all finite 
sequences A = {(Pi, qi)}}'=l (may also be empty) such that there is a system 
{(aj, bj)}~"_-i of elements from X such that ((Pl, ql) . . . . .  (Pn, q,), (al, bl), 
. . . .  (am, bin)) e ~ .  According to Theorem 4.5, II(X) := {~r(A): A e %(~)} 
can be organized into a difference poset. 

Now put P | Q := II(X) and define a mapping | P • Q -+ P | Q via 

[-Jo~({(P' q)}), (p, q) E X  |  q ) =  
(p, q) ~ x 

For simplicity, we often write p | q rather than |  q). 
We assert that | P • Q ~ P | Q is a bimorphism. Indeed, since {(1, 

1)} ~ ~ ,  we have | 1) = 7({(1, 1)}) = 1. Suppose that a, b E P with 
a 5- b a n d q  ~ Q. We have to show that a | q 5_ b | 1 7 4  
= (a | q) �9 (b | q). If (a, q) E N or (b, q) ~ N, this is clear, so we may 
assume that (a, q), (b, q) ~ X. If [3 is any bimorphism on P • Q, we have 
[3(a �9 b, q) = [3(a, q) �9 [3(b, q). Hence {(a �9 b, q)} -- {(a, q), (b, q)}, so 
t h a t ( a O b ) |  = ( a |  O ( b |  

A similar argument shows that p | (c �9 d) = (p | c) �9 (p | d) 
holds for p ~ P and c, d ~ Q with c 5_ d. 

It remains to prove that (P | Q, | is a tensor product of P and Q. 
Since every element of P @ Q = II(X) can be written in the form -rr(A) = 
O{w({(p, q)}): (p, q) ~ A} = O { p  | q: (p, q) ~ A}, every element of P 
| Q is a (])-sum of finitely many elements p | q. 

Finally, suppose that [3: P • Q ~ L is a bimorphism. If A, B E %(~) 
and A -- B, then �9 [3(A) = �9 [3(B), hence we can define a mapping +: P 
| Q -~ L by qb(-rr(A)) = �9 [3(A) for every v(A) e II(X). Obviously, + is a 
morphism and we have [3(p, q) = ~b(p | q) for all p ~ P, q e Q. I 
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Unless confusion threatens, we usually refer to P | Q rather than to 
(P | Q, @) as being a tensor product. 

Theorem 5.3. Let both D-posets P and Q possess at least one state. Then 
the tensor product of P and Q exists in the category of D-posets. In addition, 
for any state p~ on P and any state v on Q there is a unique state p, @ v on 
P | Q such that 

p , @ v ( p  @ q ) =  p.(p)v(q), p ~ P, q E Q (5.1) 

Proof Let L = [0, 1] be endowed with the natural ordering and the 
difference b @ a := b - a, a, b ~ [0, 1]. Then L is a D-poset. Choose two 
states p, and v on P and Q, respectively, and define a mapping [3~: P x Q 
---) L such that 

~ , ( p ,  q) = ~(p).v(q),  p E P, q ~ Q (5.2) 

Then [3~ is a bimorphism, which, by Theorem 5.2 is a necessary and sufficient 
condition for P and Q to admit a tensor product. 

Since 13~ is a bimorphism, from the definition of P | Q it follows that 
there is a morphism qb: P | Q ---) [0, 1] such that dp(p | q) = [3~(p, q), p 
E P, q ~ Q. But this means that qb is a state on P x Q with the desired 
property (5.1). The uniqueness of qb is clear due to the property of P | Q 
that any element t E P | Q is of the form t = O~'=1 p; @ q;. �9 

Foulis and Bennett (1993) showed that the orthoalgebra, the Fano plane, 
illustrated by the Greechie diagram in Fig. 1, has no tensor product F | F 
in the category of orthoalgebras. Since on F there is a unique state, say ~, 
defined by ~(x) = 1/3, x ~ {a, b, c, d, e , f ,  g}, using Theorem 5.3, we see 
that F | F as a D-poset exists. 

Therefore, in Dvure~enskij (1994) the problem of whether any two D- 
posets or, equivalently, any two effect algebras, admit a tensor product has 
been formulated. Recently at the 1994 IQSA Conference in Prague it was 

C 

e ( 
Fig. 1. 
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announced that a positive solution to this problem has been found, so that 
the category of difference posets, or, equivalently, of effect algebras is closed 
with respect to the operation of the tensor product. Unfortunately, the proof 
possesses a gap, and hence the problem remains open. Nevertheless, Theorem 
5.3 ensures that for physically reasonable D-posets, i.e., those having at 
least one state, any two such D-posets admit a tensor product, which for 
orthoalgebras was not always possible; see the Fano plane. 

Some questions related to the tensor product of difference posets are 
given in Wilce (1994), where the notion of bisummable functions is used to 
obtain the analogous assertion to that in Theorem 5.1. 

NOTE ADDED IN PROOFS 

Recently S. E Gudder and R. Greechie: Effect algebras counterexamples, 
Mathematica Slovaca (to appear) found an example of an effect algebra P 
such that P | P fails. 
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